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Abstract

Long-term, large-scale perspectives are necessary for understanding climate variability and its

effects on ecosystems and cultures. Tree ring records of the Medieval Climate Anomaly

(MCA) and Little Ice Age (LIA) have documented major hydroclimatic variability during the last

millennium in the American West, but fewer continuous, high-resolution hydroclimate records

of the MCA-LIA period are available for eastern North America, particularly during the transition

from the MCA to the LIA (ca. A.D. 1250–1400). Diatoms (micro-algae with silica cell walls) in

sediment cores from three Adirondack (NY, USA) lakes and a hiatus in a wetland peat deposit

in the Adirondack uplands provide novel insights into the late Holocene hydroclimate history of

the Northeast. These records demonstrate that two of the region’s most extreme decadal-

scale droughts of the last millennium occurred ca. A.D. 1260–1330 and ca. A.D. 1360–1390

during a dry-wet-dry (DWD) oscillation in the Adirondacks that contributed to forest fires and

desiccation of wetlands in New York and Maine. The bimodal drying was probably related to

more extreme droughts farther west and coincided with major events in Iroquoian and Abenaki

cultural history. Although the causes of the DWD oscillation in the Adirondacks remain uncer-

tain, changing sea-surface temperatures and solar variability are likely to have played a role.

Introduction

Paleoclimate reconstructions of the last millennium indicate generally warmer conditions in

much of North America during the Medieval Climate Anomaly (MCA), which is commonly

defined as the period between A.D. 950 and A.D. 1250 [1], followed by cooler conditions dur-

ing the Little Ice Age (LIA) ca. A.D. 1400–1700 [1–3]. Precipitation, however, is less regionally

coherent than temperature and therefore requires denser networks of proxy records to gener-

ate reliable reconstructions [4]. Although reconstructions of regional moisture balance from

the Northeast, defined here as the eastern Great Lakes region through New England, are avail-

able from upstate New York [5–8], southern Ontario [9] and New England [10–17], they are

much less numerous than in the American West where more long-lived, drought-sensitive

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248060 March 26, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Stager JC, Wiltse B, Cumming BF,

Messner TC, Robtoy J, Cushing S (2021)

Hydroclimatic and cultural instability in

northeastern North America during the last

millennium. PLoS ONE 16(3): e0248060. https://

doi.org/10.1371/journal.pone.0248060

Editor: Caroline Ummenhofer, Woods Hole

Oceanographic Institution, UNITED STATES

Received: July 28, 2020

Accepted: February 16, 2021

Published: March 26, 2021

Copyright: © 2021 Stager et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available in the NOAA-NCAR World Data Center for

Paleoclimatology at https://www.ncdc.noaa.gov/

paleo/study/32852.

Funding: We thank the Draper-Lussi Endowment

(no URL) and U.S. National Science Foundation

(P2C2 grant #1358362, https://www.nsf.gov) for

funding provided to JCS. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0002-0817-2806
https://doi.org/10.1371/journal.pone.0248060
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248060&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248060&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248060&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248060&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248060&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248060&domain=pdf&date_stamp=2021-03-26
https://doi.org/10.1371/journal.pone.0248060
https://doi.org/10.1371/journal.pone.0248060
http://creativecommons.org/licenses/by/4.0/
https://www.ncdc.noaa.gov/paleo/study/32852
https://www.ncdc.noaa.gov/paleo/study/32852
https://www.nsf.gov


trees are available for dendroclimatic analysis [4, 17], and many of the records are discontinu-

ous, relatively short, or lacking in fine-scale temporal resolution [17]. In addition, the North-

east receives more abundant precipitation year-round from many sources including the

Pacific, Gulf of Mexico, Great Lakes, and North Atlantic, making causal attributions of

drought or unusually wet conditions more difficult [5, 12, 16, 17]. As a result, the nature,

causes, and consequences of late Holocene hydroclimatic variability in the Northeast—and

therefore the interconnected climate systems of North America as a whole—remain to be fully

characterized, particularly during the transitional period between the MCA and LIA which is

studied less frequently than the MCA and LIA proper.

Here we use diatom assemblages in sediment cores from three Adirondack lakes to recon-

struct relative changes in hydroclimatic conditions through the MCA-LIA transition with

decadal to sub-decadal resolution. The ratios of planktonic to benthic taxa (%P) in diatom

assemblages are highly sensitive to light penetration of the water column that drives algal pho-

tosynthesis in habitats across a range of depths [5, 11, 18–20]. Reduced water clarity or deepen-

ing therefore tend to be associated with decreased relative abundances of benthic taxa (higher

%P) at coring sites as is lake expansion, which can shift littoral habitats outward from lake

margins and reduce hydrodynamic transport of benthic diatoms to deposition centers offshore

[5, 11, 18–20]. Such changes typically result from periods of increased regional moisture bal-

ance that, in addition to increasing water volume, can also hinder light penetration by increas-

ing inputs of algae-stimulating nutrients and pigmented soil carbon compounds [20–22].

Percentages of planktonic diatoms in sediment assemblages are therefore potentially useful for

tracking hydroclimate variability over long time periods [5, 18, 19, 22, 23].

Our diatom-based inferences are strictly qualitative due to multiple potential influences on

light penetration other than total precipitation and water depth alone, including darkening by

dissolved organic carbon, phytoplankton productivity, and siltation under wetter, stormier

conditions [19, 24, 25]. Nonetheless, regionally coherent changes in the diatom records of

hydrologically distinct lakes can be used in combination with one another to identify relative

shifts in hydroclimate regimes, particularly decadal-scale droughts that have previously been

overlooked in many records from northeastern North America.

In this study we use variability in a high-resolution planktonic diatom record from Little Green

Pond, NY, supported by diatom records from two additional lakes and a wetland from the Adiron-

dack uplands, to show that pronounced aridity occurred across much of the Northeast during the

MCA-LIA transition. In particular, two dry periods ca. A.D. 1260–1330 and ca. A.D. 1360–1390

represented some of the region’s most severe multi-decadal droughts of the last millennium. We

also demonstrate that the dry-wet-dry (DWD) oscillation was temporally linked to more extreme

"megadroughts" [17, 26] farther west, potentially influenced by multiple climatic forcing mecha-

nisms, and contemporaneous with significant events in North American cultural prehistory.

Study sites

Little Green Pond and the two supporting lakes were selected on the basis of shared limnologi-

cal traits including relatively high transparency (Secchi disk depths in the 4–8 m range), mod-

est size and depth, a small surface outlet, relatively simple bathymetric contours, lack of major

tributaries, circumneutral pH, and similar planktonic diatom communities. All three sites are

located within the central uplands of the 2.5 million ha Adirondack Park (Fig 1) where bedrock

is primarily granitic and therefore free of carbonate minerals containing ancient carbon that

can complicate radiocarbon dating of lake sediments.

The four sites selected for this study are located within less than 40 km of one another in

the Adirondack uplands (Fig 1). All are hydrologically distinct from one another but their
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climatic settings are very similar [5, 27]. Mean annual temperature in the uplands is ca. 4˚C,

and mean annual precipitation is ca. 100 cm/yr [27]. Prevailing storm tracks are westerly, but

precipitation can come from multiple sources including the Gulf of Mexico, tropical Atlantic,

and North Atlantic as well as the Pacific.

Little Green Pond (44˚21’26"N, 74˚17’58"W) has a surface area of 28 ha and maximum

depth of 12.5 m, and is situated in a glacial kettle depression at 488 meters above mean sea

level (m.a.m.s.l.) within a forested watershed (Fig 1). The pond has been subjected to rotenone

treatments and stocking with various fish species since the mid-20th century. Moody Pond

(44˚19’43"N, 74˚07’06"W) is a 9 ha lake with a maximum depth of 5 m, situated at 470 m.a.m.

s.l. within a largely forested watershed (Fig 1). It has experienced significant human impacts

including shoreline development, moderate eutrophication, invasive species, and fish stocking

during the last century. Wolf Lake (44˚01’03"N, 74˚13’14"W) is a remote lake of 62 ha in a for-

ested watershed at 556 m.a.m.s.l. (Fig 1). Because access to the lake is strictly controlled by the

New York State University of Environmental Science and Forestry, it is an exceptionally undis-

turbed "heritage lake" [5, 28] that has been protected from fisheries management practices,

shoreline development, damming, and other local-scale human impacts. Correlations between

%P in surface sediment samples and water depth at Wolf Lake were very strong (r2 = 0.96)

when sampled in 2012, and %P in sediment core assemblages also tracked local precipitation

Fig 1. Site maps. Panel A. Northeastern region with locations of paleoclimate study sites referred to in the text. Green sites registered one or both of the dry phases of

the DWD oscillation, red sites did not, and the yellow site was equivocal. Panels B, C, D. Contour maps of Wolf Lake, Moody Pond, and Little Green Pond respectively,

with coring sites indicated by black triangles. Study sites shown on regional map: 1. Little Green Pond, 2. Bloomingdale Bog, 3. Moody Pond, 4. Wolf Lake, 5. Clear

Pond [8], 6. Piseco Lake [7], 7. Crawford Lake, marking the eastern margin of the study area used by Buckley et al. [9], 8. Fayetteville Green Lake [12], 9. Piermont

Marsh [3], 10. Pettaquamscutt River Estuary [12], 11. Deep Pond [13], 12. New Long Pond [14], 13. Walden Pond [11], 14. Davis Pond [14], 15–17. Saco Heath, Sidney

Bog, Great Heath Bog, respectively [10]. 18. Lac Brulé [37].

https://doi.org/10.1371/journal.pone.0248060.g001
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variability during the mid- to late 20th century [5]. Bloomingdale Bog (44˚23’03"N, 74˚

08’25"W) is a raised wetland of ca. 100 ha at ca. 480 m a.m.s.l. that empties into the Saranac

River drainage (Fig 1). Vegetation includes Sphagnum, grasses, and ericaceous shrubs, and

depths of the peat deposits generally range from 1 to 2.5 m.

Materials and methods

Little Green Pond core LG-P (105 cm long) was collected in 2014 from 12 m depth in the cen-

ter of the pond (Fig 1) with a modified Kullenberg sampler and extruded vertically in the field

in 0.25 cm increments. Supporting core LG-2 was collected from the same location in 2012

with a Glew gravity sampler. Supporting core WOLF-17B (77 cm long) was collected from

12.5 m depth in the central basin of Wolf Lake in 2017 with a modified Kullenberg sampler,

and supporting core MOODY-C (45 cm) was collected in 2019 from 5 m depth in the center

of Moody Pond with a Glew gravity sampler. All three supporting cores were extruded verti-

cally in the field in 1 cm increments. The peat core from Bloomingdale Bog (50 cm) was col-

lected from the approximate center of the wetland with a Russian peat sampler after hand-

removal of 35 cm of loose Sphagnum that lay atop denser peat below (total section length = 85

cm). Collection and possession permit #1313 was provided to Paul Smith’s College by the NYS

Department of Environmental Conservation for field sampling.

A mean of 1000 diatom valves per sample from the LG-P core were identified at 1000X

under oil immersion using standard references [29–32]. Diatom assemblages were enumerated

at 0.25 cm intervals between 15 and 65 cm depth and at coarser resolution (0.5–1.0 cm) above

and below that. Siliceous scales of chrysophyte algae were also enumerated along with the dia-

toms. Planktonic diatom assemblages in cores LG-2, WOLF-17B, and MOODY-C were exam-

ined at coarser temporal resolution for comparative purposes only, with a mean of 300 diatom

valves counted per sample.

Age control

Bayesian age-modeling of the LG-P core (Fig 2) was conducted with the BACON version 2.3.9.1

modeling package [33]. The age-depth model for LG-P was based upon accelerator mass spec-

trometry (AMS) ages of seven bulk sediment samples (Table 1) and comparison of the recent

diatom stratigraphy with that of gravity core LG-2. The gravity core was dated with 210Pb (Fig

3) using a germanium well detector for gamma counting at Queen’s University and a constant

rate of supply model was used to establish an age-depth chronology [34]. Because stratigraphic

comparison of diatom records from the two cores indicated that the mud-water interface of

LG-P was intact, the age of the top of that core was taken to be 2014, the year of collection.

Bayesian age modeling of supporting core Moody-C was based on AMS dates from two

bulk sediment samples (Table 1) and similar age-modeling for WOLF-17B was based on AMS

ages of three pollen samples (Table 1). Comparison with the diatom stratigraphy of WOLF-62

[5] and other (unpublished) cores from this lake suggested that the last ca. 100 years of the dia-

tom record (ca. 10 cm) of sediment were missing from the top of WOLF-17B. Therefore, an

approximate date of A.D. 1900 was estimated for the core top. Fibrous peat samples from 1 cm

above and below a textural transition upwards from relatively woody to more fibrous herba-

ceous peat at 62 cm depth in the Bloomingdale Bog core were collected for radiometric dating

of plant remains (Table 1).

Results

In general, the radiocarbon-based age-depth profiles of LG-P, MOODY-C, and WOLF-17B

revealed relatively smoothly increasing ages with depth (Fig 2). However, the LG-P profile
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displayed more variability than the other two, which could reflect changing sedimentation

regimes and/or slight offsets due to reworking of formerly deposited organic matter within the

lake. The basal age of core LG-P was ca. 1360 calibrated years before present (BP), and the

extrapolated basal ages of supporting cores MOODY-C and WOLF-17B were ca. 1100 and

1050 cal yr BP, respectively.

Radiocarbon ages of peat immediately above and below the textural transition at 58 cm

depth in the Bloomingdale Bog core indicated that roughly 1500 years were missing from the

record and that peat deposition resumed during the mid- to late 13th century (Table 1). A simi-

lar hiatus due to fire and/or drought was also encountered in peat cores taken independently

from elsewhere in the bog [6].

The activity of 210Pb in Little Green Pond core LG-2 decreased exponentially with depth,

reaching background levels within the upper ca. 20 cm of the core (Fig 3). The base of the core

was deposited during the early to mid-18th century.

Diatom assemblages

In Little Green Pond cores LG-2 and LG-P, the %P fractions of the diatom assemblages were

primarily composed of Aulacoseira ambigua, Discostella stelligera, and the Lindavia bodanica
group (Fig 4). However, members of the facultatively planktonic A. distans group along with

Fig 2. Radiocarbon age-depth models for sediment cores from Little Green Pond (LG-P), Wolf Lake (WOLF-17B), and Moody Pond (MOODY-C).

Horizontal bars represent calibrated age probability ranges (2-σ) for the radiometric dates. Dotted (solid) lines represent maximum-minimum (mean) ages.

Inset: percentages of planktonic and tychoplanktonic diatoms in surface sediment assemblages along a water depth gradient in Little Green Pond.

https://doi.org/10.1371/journal.pone.0248060.g002
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planktonic Asterionella formosa, Fragilaria crotonensis, and long Synedra spp. cf. S. nana) also

became more abundant in the upper 15 cm of the cores. The latter three planktonic taxa are

commonly found in lakes that have undergone cultural eutrophication or other anthropogenic

disturbances [11, 36], and their increased prevalence in the diatom assemblages probably

reflects disruption of the pond ecosystem by fisheries management practices since the 1950s.

Because such changes would have obscured climate-related shifts in the diatom assemblages,

we did not evaluate the most recent portion of these records in terms of hydroclimate. Analysis

of diatoms of sediment samples from the mud-water interface along a depth transect in Little

Green Pond yielded strong correlations of %P with water depth (Fig 2; r2 = 0.82) similar to

those found previously in Wolf Lake [5].

The most common planktonic diatoms in core MOODY-C were Tabellaria flocculosa var.

IIIP, Aulacoseira ambigua, A. distans complex, Discostella stelligera, and the Lindavia bodanica
group. In Wolf Lake the dominant planktonic taxa were D. stelligera, L. bodanica, T. flocculosa,

Table 1. Radiocarbon ages of Adirondack core subsamples.

Sample (cm) delta-13C (o/oo) 14C y B.P. Cal y A.D. range (probability) Lab ID

LG-P
42.5–43.5 -28.8 500 ± 30 1334–1336 (0.01) Beta-414280

1398–1448 (0.99)

49.5–50.5 -28.5 590 ± 30 1299–1370 (0.71) Beta-414281

1379–1413 (0.29)

59.5–60.5 -28.5 590 ± 30 1299–1370 (0.71) Beta-404202

1379–1413 (0.29)

69.5–70.5 -28.9 840 ± 30 1059–1063 (0.01) Beta-414282

1154–1264 (0.99)

79.5–80.5 -28.4 1080 ± 30 894–930 (0.28) Beta-414283

937–1018 (0.72)

89.5–90.5 -28.7 1280 ± 30 664–773 (1.00) Beta-414284

99.5–100.5 -27.5 1360 ± 30 616–693 (0.97) Beta-404203

748–762 (0.03)

Moody-C
30–31 na 535 ± 15 1331–1339 (0.04) OS-154248

1397–1430 (0.96)

43–44 na 935 ± 15 1035–1059 (0.20) OS-151751

1064–1154 (0.80)

Wolf-17B
40–41 na 475 ± 25 1414–1443 (1.00) OS-141068

51–52 na 575 ± 15 1316–1354 (0.64) OS-142607

1389–1411 (0.36)

60–61 na 765 ± 15 1224–1234 (0.06) OS-141069

1242–1278 (0.94)

Bloomingdale
56.5–57.5 -27.0 730 ± 30 1224–1237 (0.03) Beta-315543

1241–1297 (0.97)

58.5–59.5 -28.9 2200 ± 30 B.C. 366–191 (0.99) Beta-315542

B.C. 188–186 (0.01)

Calibrated 2σ age probability ranges determined with CALIB 7.1.0 [35]. All of the samples analyzed from Little Green Pond and Moody Pond were bulk organic lake

sediment. The samples analyzed from WOLF-17B were pollen fractions, and the Bloomingdale Bog samples consisted of fibrous peat (i.e. plant macrofossils).

https://doi.org/10.1371/journal.pone.0248060.t001
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A. ambigua, A. subarctica, and A. lirata (Fig 5) but %P was higher in core WOLF-17B than

WOLF-62 [5] due to its deeper setting.

For this study, we focus primarily on the 66–45 cm (ca. A.D. 1250–1400) interval in core

LG-P within which large decreases in %P occurred. Mean %P fell from 66% overall to 56%

(41–66%) between 66 and 56 cm (ca. A.D. 1260–1330), the lowest values of the last millen-

nium. Between 52 and 47 cm (ca. A.D. 1360–1390) %P declined to a mean of 58% (47–64%),

and values averaged 63% (52–72%) within the intervening interval (Fig 5).

Similar bimodal decreases in %P occurred in the less finely resolved diatom records of Wolf

Lake and Moody Pond (Fig 5). In all three lake records, the first decrease in %P was more

extreme than the second and represented the lowest values of the last millennium. A >1400 yr

Fig 3. Activity of 210Pb, sediment accumulation rates, and age-depth relationships in Little Green Pond core LG-2. Dotted

lines indicate maximum/minimum ranges of the 210Pb activities and radiometric dates.

https://doi.org/10.1371/journal.pone.0248060.g003
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hiatus in the Bloomingdale Bog core (Table 1) indicated resumption of peat deposition, most

likely after fire and/or drought, during the mid- to late 13th century (Fig 5).

Discussion

Radiocarbon-based age models yield somewhat "floating" chronologies due to various error

sources including reworking of organic compounds, sediments, or botanical remains as well as

the inherent uncertainty of radiometric dating illustrated by the multidecadal age ranges in

our records (Table 1). Although these dates are less firmly anchored in time than those from

most tree rings records, we are confident that ancient carbon offsets are not significant in Wolf

Lake because equivalent dates were previously obtained for pollen and bulk sediment samples

there [5], and the similar ages and durations of similar excursions in %P at all three lakes in

addition to the hiatus at Bloomingdale Bog strongly suggest that the excursions were contem-

poraneous. We therefore conclude that these multi-proxy signals of drought from multiple

Fig 4. Microfossil assemblages in Little Green Pond cores LG-2 (top) and LG-P (bottom). Cyst:Diatom, Scale:Diatom = ratios of chrysophyte algal cysts and

scales to diatoms. All diatom taxa are planktonic or facultatively planktonic except for the "BENTHIC" category. FC+SYN = sum of Fragilaria crotonensis and

Synedra spp. percentages. Dotted line designates disruption of diatom communities by fisheries management practices during the A.D. 1950s. The presence of

similar anthropogenic disturbance intervals in both cores demonstrates that the top of LG-P was intact. Horizontal grey bar highlights the DWD interval

discussed in the text. Radiocarbon ages for LG-P are provided adjacent to their corresponding depths in the figure.

https://doi.org/10.1371/journal.pone.0248060.g004
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Fig 5. Paleoclimatic and cultural records of the last millennium. (a) MCA = Medieval Climate Anomaly,

LIA = Little Ice Age. Tan column spans the MCA-LIA transition A.D. 1250–1400. (b) Age probability ranges for the

resumption of peat deposition in Bloomingdale Bog after hiatus. Black box = this study, open box = [6]. (c-e) %P in

cores from Wolf Lake, Moody Pond, and Little Green Pond, respectively (this paper). Chronologies are based on mean

ages with multidecadal uncertainty ranges that could allow closer temporal alignment of peaks. (f) %P in core WOLF-

62 [5]. (g) Pollen-derived precipitation record from Clear Pond, NY [8]. (h, i) Cultural periods among Iroquoian

cultures in southern Ontario [59]. (j) Hydrological reconstruction from Great Heath Bog, ME [10]. (k) %P in core

from Walden Pond, MA [11]. (l) Composite PNA pattern reconstruction from NY and RI [12]. All proxy records are

arranged with wetter conditions upward.

https://doi.org/10.1371/journal.pone.0248060.g005
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locations are best explained by synchronous regional responses to a dry-wet-dry climatic oscil-

lation during the MCA-LIA transition.

Few high-resolution paleoclimate reconstructions of the last millennium are available from

the Adirondack region for comparison to our hydroclimate records. The diatom record of

WOLF-17B revealed the DWD oscillation more clearly than that of core WOLF-62 (Fig 5),

which was collected from a shallower portion of the lake where fluctuations in %P were more

muted [5]. Resumption of peat deposition above a hiatus at similar depth to ours in another

core from Bloomingdale Bog [6] was said to occur ca. A.D. 1400, but the calibrated probability

distribution of the radiocarbon date upon which that age was based spanned A.D. 1299–1435,

which overlapped with the DWD oscillation (Fig 5). Two prominent charcoal deposition peaks

in a core from Piseco Lake, NY, indicated forest fires ca. A.D. 1300 and 1400 that appear to have

coincided with the bimodal droughts [7]. A pollen-based record from Clear Pond, N.Y. [8] reg-

istered a single broad precipitation decrease during the 14th century (Fig 5), and fluctuations in

varve thickness and composition at Fayetteville Green Lake, NY [12], were also consistent with

evidence for a DWD oscillation in the Adirondacks. However, a composite "PRGL" series

derived from the Green Lake data in combination with a record from coastal Rhode Island [12]

exhibited a prominent drought signal only during the first half of the DWD interval (Fig 5). A

pollen record from the Hudson River estuary (Fig 1) that was taken to indicate increased mois-

ture during the 14th century displayed no clear evidence of a DWD oscillation [3].

Elsewhere in the Northeast, a similar DWD oscillation was registered at Walden Pond, MA,

(Figs 1 and 5) [11] and severe drying in Maine ca. A.D. 1300 and A.D. 1400 contributed to for-

est fires and drought-related hiatuses in peatland deposits similar to those in the Adirondacks

(Figs 1 and 5) [10]. Tree-ring series from southern Ontario [9] indicated moderate drying A.

D. 1280–1320 and A.D. 1387–1396, but only two of the seven chronologies covered the DWD

interval and they differed in the relative intensities of the dry phases. A varved pollen record

from Lac Brulë, southern Quebec, registered a single dry period ca. AD 1400 [37]. Most other

northeastern paleoclimate records of the last millennium lack the temporal resolution or

hydroclimate-sensitivity needed to detect the DWD, but sedimentological time series from

Davis Pond, Deep Pond, and New Long Pond, MA (Fig 1), registered no major low stands dur-

ing the DWD interval [13, 14]. These discrepancies among lacustrine records might reflect

true geographic variability in hydroclimate, because most of the sites lacking the DWD signal

were restricted to the southern sector of the region from Cape Cod and Rhode Island to the

Hudson estuary (Fig 1). Alternatively, they might reflect differing sensitivities of proxies and/

or coring sites as was the case with the two diatom records from Wolf Lake (Fig 5).

Continental patterns

Tree-ring records from western North America registered widespread, extreme, long-lasting

megadroughts during the DWD oscillation following a generally arid period through most of

the MCA [4, 38–42]. Aridity in the Adirondacks during the MCA proper was less intense and

was not so clearly registered except for an interval of low %P ca. A.D. 950–1000 (Fig 6). Mega-

droughts occurred during the first dry phase of the DWD interval in much of the Southwest

and Midwest, including a "Great Drouth" A.D. 1276–1297 (Fig 6) [38, 43, 44]. The second dry

phase was accompanied by megadroughts in the Southwest ca. A.D. 1350–1410 [43], in the

West and Mississippi Valley ca. A.D. 1340–1400 [38, 40, 41], and in Mesoamerica ca. A.D.

1380–1400 [45]. An intervening wet period has also been dated to the A.D. 1290–1350 interval

in the parts of the West [38, 43], several decades earlier than in the Adirondack records but

within the probability ranges of our age models (Fig 6). An opposing wet-dry-wet pattern

occurred in the northern Great Plains and Great Lakes regions [21, 46]. Some paleoclimate
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maps based on such studies also indicate wet conditions in the Northeast during the late 14th

century droughts [38, 40, 47] in contrast to the hydroclimate records described here.

Causal mechanisms

It is likely that both warming (enhanced evaporation) and reduced precipitation contributed

to aridity during the dry phases of the DWD oscillation in the Northeast. The oscillation was

accompanied by a warm-cool-warm pattern in Maine [15] and in the Northern Hemisphere as

a whole during the 14th century [1], and summer precipitation in southeastern Canada

Fig 6. Hydroclimate variability at Little Green Pond in comparison to tree ring-based hydroclimate reconstructions from

western North America and the Mississippi Valley. Vertical bars indicate drought (tan) and wet (violet) intervals in the LG-P

record. Horizontal bars indicate extreme droughts (red) and wet periods (blue). (a) Dry decades registered in tree ring records

from southern Ontario [9]. Asterisks (circles) represent severe (moderate) drought. (b) Percent planktonic diatoms in core LG-P.

(c) Megadrought in the West [44]. (d) Periods of extensive droughts and pluvials in the Southwest [38]. Asterisks indicate

maximum extent of droughts. (e) "Stine Droughts" and intervening wet period [40]. (f) "Great Drouth" linked to Anasazi Pueblo

collapse [38]. (g) Droughts in western North America [34]. (h) Western North American droughts and wet periods [43]. (i)

Droughts in the West and Mississippi Valley [44]. (j) Droughts in the Mississippi Valley associated with major cultural

disruptions [40].

https://doi.org/10.1371/journal.pone.0248060.g006
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decreased during one or both of the warm phases [9, 37]. Reduced soil moisture, water body

extent, and evapotranspiration during megadroughts upwind in the west might also have

reduced the water vapor content of continental airmasses and thereby contributed somewhat

to rainfall reductions downwind in the Northeast. Additional underlying causes of the warm,

dry conditions in the Northeast are difficult to identify due to the limitations of available paleo-

climate records, but a brief summary of proposed origins of the western megadroughts is

offered here in order to illustrate the potential complexity of mechanisms behind the DWD

oscillation.

Western megadroughts of the last millennium have been linked to Pacific sea-surface tem-

peratures (SST) through the Pacific Decadal Oscillation (PDO), Pacific North American

(PNA) pattern, and El Niño-Southern Oscillation (ENSO) system. Negative phases of the PDO

are correlated with drying in the Southwest and parts of the Northeast [42, 44, 48] but appar-

ently not in the Adirondacks (Table 2). Negative excursions occurred ca. A.D. 1300 and A.D.

1400 in one paleo-PDO record [49] but not in others [1, 50].

Positive phases of the PNA pattern are also correlated with drought in the Southwest and

Midwest [50] but wetting in the Northeast [12, 16, 48] (Table 2), so continent-spanning aridity

during the DWD oscillation seems unlikely to reflect the PNA pattern alone. Paleo-PNA

reconstructions are also inconclusive in this regard as one record [12] registered negative val-

ues during the first dry phase of the DWD oscillation but not the second, and another [50]

yielded only slightly negative values throughout the 13th and 14th centuries.

La Niña-like phases of the ENSO system are associated with aridity in the Southwest and

parts of the Northeast [16, 42, 43, 47, 48], but not in the Adirondacks (Table 2). Coral records

registered a warm El Niño ca. A.D. 1325–1350 and a strong La Niña ca. A.D. 1390–1400 [51],

but paleo-ENSO reconstructions differ from one another [1, 39, 43, 52] so causal links to the

DWD oscillation remain speculative.

Atlantic SSTs and solar variability might also have influenced hydroclimates in the North-

east during the DWD oscillation. Warm (positive) phases of the Atlantic Multidecadal Oscilla-

tion (AMO) have been linked to the western megadroughts [42, 44, 53] as well as to drying in

the Adirondacks (Table 2), and a paleo-AMO reconstruction registered a pronounced warm-

cool-warm pattern in the North Atlantic during the 14th century [1]. However, although the

Northern Hemisphere’s Arctic Oscillation (AO), which includes the more regional North

Atlantic Oscillation (NAO), is positively correlated with temperature and precipitation in

much of the Northeast [14, 48] (Table 2), paleo-NAO reconstructions indicate no definitive

fluctuations that would explain the DWD oscillation [2, 54]. Periods of reduced solar flux are

Table 2. Correlations among external forcing mechanisms [56] and monthly weather parameters recorded at two United States Historical Climatology Network sta-

tions in the Adirondack uplands from 1950 to 2019 [27].

Parameter Solar AO NAO PNA AMO PDO SOI

Precipitation

IL -0.10 (0.005) 0.07 (0.02) x x 0.06 (0.04) -0.08 (0.01) x

DAN -0.10 (0.003) 0.08 (0.01) x 0.08 (0.01) 0.11 (0.002) x x

Temperature

IL x 0.11 (0.0006) 0.12 (0.0003) 0.11 (0.002) x -0.12 (0.0003) x

DAN -0.06 (0.04) 0.11 (0.0006) 0.11 (0.0005) 0.11 (0.0006) x -0.12 (0.0004) x

IL, DAN = Indian Lake and Dannemora stations, respectively. P-values in parentheses. x indicates no significant correlation. Solar = solar flux. AO = Arctic Oscillation.

NAO = North Atlantic Oscillation. PNA = Pacific North American pattern. AMO = Atlantic Meridional Oscillation. PDO = Pacific Decadal Oscillation. SOI = Southern

Oscillation Index.

https://doi.org/10.1371/journal.pone.0248060.t002
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associated with somewhat drier conditions throughout the Northeast and much of the West

[48] (Table 2), so low solar flux during the Wolf Solar Minimum of A.D. 1270–1340 [55]

might have contributed to the first dry phase of the DWD oscillation.

In sum, our records help to clarify temporal and geographical aspects of hydroclimate vari-

ability in the Northeast during the last millennium, demonstrating at least a temporal linkage

to more extreme droughts farther west during the DWD interval. However, the interplay

among causal mechanisms behind that variability was probably complex and for now remains

uncertain.

Cultural connections

Regardless of the causes of the DWD oscillation, environmental stresses associated with aridity

during the MCA-LIA transition could potentially have impacted indigenous North American

cultures in various ways. In western regions, previous analyses have linked severe droughts of

the late 13th and 14th centuries to population declines and abandonment of agriculturally

dependent settlements in the Four Corners region, the Great Basin, and the Mississippi Valley

[38, 44, 50] as well as to Mesoamerican cultural history [42]. In contrast, the hydrological

changes inferred for the Northeast during the DWD oscillation as well as during most of the

MCA appear to have been milder (Fig 6). That region’s relatively moist climates tend to make

lakes and temperate forest habitats less vulnerable to the extreme consequences of hydrocli-

matic variability faced by western dry-habitat ecosystems, and it is possible that even during

periods of reduced precipitation the Northeast could have served as a "hydroclimate refuge"

while harsher conditions prevailed elsewhere, particularly if the milder reductions in net water

balance also happened to improve local growing conditions for crops that could be harmed by

extreme wetness as well as drought.

Archaeological evidence from the Northeast indicates varied and complex changes among

diverse cultures during the DWD interval including increased population, sedentism, commu-

nity building, greater agricultural productivity, and evidence of immigration from afar, some

of which could be consistent with the presence of a such a climatic refugium. While the South-

west and Mississippi Valley experienced population declines, central New York and Ontario

witnessed the first establishment of centralized longhouse villages with distinctive ceramics

and heavy commitment to maize-bean-squash agriculture beginning ca. A.D. 1250–1300 [56–

59]. The Uren cultural phase ca. A.D. 1290–1330 (Fig 5) saw eastward migrations into Ontario

[60] that, in the context of harsher megadroughts to the west (Fig 6), might also represent indi-

rect effects of differential climatic stress. For example, aridity during the 13th and 14th centuries

that contributed to increased warfare and fortifications in the Mississippi Valley [50, 60] could

have encouraged emigrations into the Northeast where perennial lakes, forest habitats, and

conditions more suitable for agriculture prevailed under less arid climates throughout the last

millennium.

Events in single settlements did not necessarily reflect regional cultural stages, but the

apparent synchrony of arid phases of the DWD and changes in the cultural history of Craw-

ford Lake, Ontario [36], might be potentially informative in this regard. The first evidence of

agriculture near Crawford Lake occurred ca. A.D. 1270 around the time of the first dry phase

of the DWD oscillation, and the first large-scale Iroquoian settlement was established ca. A.D.

1325–1375 during the second drought. A later episode of heavy settlement near that lake also

co-occurred with another period of reduced %P (i.e. drought) in the record of Little Green

Pond ca. A.D. 1410–1450 (Fig 5). However, the possibile existence of causal linkages between

the cultural history of Crawford Lake and the relatively mild shifts in hydroclimate revealed in

our records remains speculative.
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Snow [61] bracketed late Owasco and Oak Hill periods of cultural development in southern

Ontario within the A.D. 1250–1400 interval (Fig 5), a time of rapid population growth and

increased settlement [60]. Intensification of agriculture and establishment of more permanent

year-round villages also occurred among Abenaki cultures of northern Vermont and the Con-

necticut Valley during the 14th century [62]. The intensification of horticulture and sedentism

in the Northeast ca. A.D. 1250 has been thought to reflect climatic cooling [63] but our records

suggest that it might also have been influenced by hydroclimate variability during the MCA--

LIA transition.

Conclusions

This study demonstrates the potential for using fine-interval diatom records to help develop a

stronger network of hydroclimatic reconstructions in the Northeast, where lacustrine archives

are likely to be more readily available than hydroclimatically sensitive tree-ring records. As

noted in a recent review of the role of paleoclimatology in modeling future climates [64],

many models disagree about the nature and direction of precipitation variability on regional

scales as global warming continues. Hydroclimate reconstructions such as these from the Adir-

ondacks can augment shorter instrumental records and help to test and improve such models.

For example, recent concerns that a new megadrought may be emerging in the American

Southwest [26] arise in part from reconstructions of past hydroclimate and its presumed forc-

ing mechanisms. If a new continental-scale drought is indeed beginning in this century, then

our records suggest that it currently differs from the wider geographic distribution of aridity

during the DWD oscillation because climates in the Northeast have generally become wetter,

not drier, in recent decades [27, 65].

Our Adirondack records also help to provide a more detailed climatic context for archeolo-

gical investigations in the region. As a historical analog, the DWD interval suggests that the

fluctuations in hydroclimate coincided with significant events in North American cultural his-

tory, but their impacts were apparently less severe in the relatively wet Northeast than in the

more arid West.
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